2017
Li C, Miller J, Wang J, Koley SS, Katz J.
Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks. Journal of Geophysical Research [Internet]. :7938-7957.
Publisher's VersionAbstractThis laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2–10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2–4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about 22.1, and for larger droplets, the power decreases well below 23. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from1 mm to 46 and 14 mm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.
Niepa THR, Vaccari L, Leheny R, Goulian M, Lee D, Stebe K.
Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa. Scientific Reports [Internet]. 7.
Publisher's VersionAbstractBacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.
Brakstad OG, Almas I, Krause DF.
Biotransformation of natural gas and oil compounds associated with marine oil discharges. Chemosphere [Internet]. 182 :555-558.
Publisher's VersionAbstractField data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure.
Chu S, Prosperetti A.
Bubble plumes in a stratified environment: Source parameters, intrusion height and neutral height. Physical Review Fluids [Internet]. 2 (10).
Publisher's VersionAbstractA cross-sectionally averaged model is used to study several aspects of the physics of a bubble plume rising in a stratified quiescent liquid. Scaling analyses for the peel height, at which the plume momentum vanishes, and the neutral height, at which its average density equals the ambient density, are presented. Contrary to a widespread practice in the literature, it is argued that the neutral height cannot be identified with the experimentally reported intrusion height. Recognizing this difference provides an explanation of the reason why the intrusion height is found so frequently to be much above predictions and brings the theoretical results in line with observations. The mathematical model depends on three dimensionless parameters, some of which are related to the inlet conditions at the plume source. Their influence on the peel and neutral heights is illustrated by means of physical considerations, scaling analyses, and numerical results.
Vaccari L, Molaei M, Niepa HRT, Lee D, Leheny R, Stebe JK.
Films of bacteria at interfaces. Advances in Colloid and Interface Science [Internet]. 247 :561-572.
Publisher's VersionAbstractBacteria are often discussed as active colloids, self-propelled organisms whose collective motion can be studied in the context of non-equilibrium statistical mechanics. In such studies, the behavior of bacteria confined to interfaces or in the proximity of an interface plays an important role. For instance, many studies have probed collective behavior of bacteria in quasi two-dimensional systems such as soap films. Since fluid interfaces can adsorb surfactants and other materials, the stress and velocity boundary conditions at interfaces can alter bacteria motion; hydrodynamic studies of interfaces with differing boundary conditions are reviewed. Also, bacteria in bulk can become trapped at or near fluid interfaces, where they colonize and form structures comprising secretions like exopolysaccharides, surfactants, living and dead bacteria, thereby creating Films of Bacteria at Interfaces (FBI). The formation of FBI is discussed at air-water, oil-water, and water-water interfaces, with an emphasis on film mechanics, and with some allusion to genetic functions guiding bacteria to restructure fluid interfaces. At air-water interfaces, bacteria form pellicles or interfacial biofilms. Studies are reviewed that reveal that pellicle material properties differ for different strains of bacteria, and that pellicle physicochemistry can act as a feedback mechanism to regulate film formation. At oil-water interfaces, a range of FBI form, depending on bacteria strain. Some bacteria-laden interfaces age from an initial active film, with dynamics dominated by motile bacteria, through viscoelastic states, to form an elastic film. Others remain active with no evidence of elastic film formation even at significant interface ages. Finally, bacteria can adhere to and colonize ultra-low surface tension interfaces such as aqueous-aqueous systems common in food industries. Relevant literature is reviewed, and areas of interest for potential application are discussed, ranging from health to bioremediation.
Zhao L, Boufadel M, Katz J, Haspel G, Lee K, King T, Robinson B.
A New Mechanism of Sediment Attachment to Oil in TurbulentFlows: Projectile Particles. Environmental Science & Technology. 51 (19) :11020–11028.
AbstractThe interaction of oil and sediment in the environment determines, to a large extent, the trajectory and fate of oil. Using confocal microscope imaging techniques to obtain detailed 3D structures of oil–particle aggregates (OPAs) formed in turbulent flows, we elucidated a new mechanism of particle attachment, whereby the particles behave as projectiles penetrating the oil droplets to depths varying from ∼2 to 10 μm due to the hydrodynamic forces in the water. This mechanism results in a higher attachment of particles on oil in comparison with adsorption, as commonly assumed. The projectile hypothesis also explains the fragmentation of oil droplets with time, which occurred after long hours of mixing, leading to the formation of massive OPA clusters. Various lines of inquiry strongly suggested that protruding particles get torn from oil droplets and carry oil with them, causing the torn particles to be amphiphillic so that they contribute to the formation of massive OPAs of smaller oil droplets (<∼5–10 μm). Low particle concentration resulted in large, irregularly shaped oil blobs over time, the deformation of which without fragmentation could be due to partial coverage of the oil droplet surface by particles. The findings herein revealed a new pathway for the fate of oil in environments containing non-negligible sediment concentrations.
Gros J, Socolofsky S, Anusha D, Jun I, Zhao L, Boufadel M, Reddy C, Arey JS.
Petroleum dynamics in the sea and influence of subseadispersant injection during Deepwater Horizon. Proceedings of the National Academy of Sciences . 114 (38) :10065–10070.
AbstractDuring the Deepwater Horizon disaster, a substantial fraction of the 600,000–900,000 tons of released petroleum liquid and natural gas became entrapped below the sea surface, but the quantity entrapped and the sequestration mechanisms have remained unclear. We modeled the buoyant jet of petroleum liquid droplets, gas bubbles, and entrained seawater, using 279 simulated chemical components, for a representative day (June 8, 2010) of the period after the sunken platform’s riser pipe was pared at the wellhead (June 4–July 15). The model predicts that 27% of the released mass of petroleum fluids dissolved into the sea during ascent from the pared wellhead (1,505 m depth) to the sea surface, thereby matching observed volatile organic compound (VOC) emissions to the atmosphere. Based on combined results from model simulation and water column measurements, 24% of released petroleum fluid mass became channeled into a stable deep-water intrusion at 900- to 1,300-m depth, as aqueously dissolved compounds (∼23%) and suspended petroleum liquid microdroplets (∼0.8%). Dispersant injection at the wellhead decreased the median initial diameters of simulated petroleum liquid droplets and gas bubbles by 3.2-fold and 3.4-fold, respectively, which increased dissolution of ascending petroleum fluids by 25%. Faster dissolution increased the simulated flows of water-soluble compounds into biologically sparse deep water by 55%, while decreasing the flows of several harmful compounds into biologically rich surface water. Dispersant injection also decreased the simulated emissions of VOCs to the atmosphere by 28%, including a 2,000-fold decrease in emissions of benzene, which lowered health risks for response workers.
Williams AK, Bacosa HP, Quigg A.
The impact of dissolved inorganic nitrogen and phosphorous on responses of microbial plankton to the Texas City “Y” oil spill in Galveston Bay, Texas (USA). Marine Pollution Bulletin . 121 (1-2) :32-44.
AbstractOngoing bioremediation research seeks to promote naturally occurring microbial polycyclic aromatic hydrocarbon (PAH) degradation during and after oil spill events. However, complex relationships among functionally different microbial groups, nutrients and PAHs remain unconstrained. We conducted a surface water survey and corresponding nutrient amendment bioassays following the Texas City “Y” oil spill in Galveston Bay, Texas. Resident microbial groups, defined as either heterotrophic or autotrophic were enumerated by flow cytometry. Heterotrophic abundance was increased by oil regardless of nutrient concentrations. Contrastingly, autotrophic abundance was inhibited by oil, but this reaction was less severe when nutrient concentrations were higher. Several PAH compounds were reduced in nutrient amended treatments relative to controls suggesting nutrient enhanced microbial PAH processing. These findings provide a first-look at nutrient limitation during microbial oil processing in Galveston Bay, an important step in understanding if nutrient additions would be a useful bioremediation strategy in this and other estuarine systems.
Zhao L, Boufadel MC, King T, Robinson B, Goa F, Socolofsky SA, Lee K.
Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Marine Pollution Bulletin [Internet]. 120 (1-2) :203-216.
Publisher's VersionAbstract
Underwater blowouts from gas and oil operations often involve the simultaneous release of oil and gas. Presence of gas bubbles in jets/plumes could greatly influence oil droplet formation. With the aim of understanding and quantifying the droplet formation from Deepwater Horizon blowout (DWH) we developed a new formulation for gas-oil interaction with jets/plumes. We used the jet-droplet formation model VDROP-J with the new module and the updated model was validated against laboratory and field experimental data. Application to DWH revealed that, in the absence of dispersant, gas input resulted in a reduction of d /react-text 50 react-text: 182 by up to 1.5 /react-text react-text: 183 /react-text react-text: 184 mm, and maximum impact occurred at intermediate gas fractions (30–50%). In the presence of dispersant, reduction in d /react-text 50 react-text: 260 due to bubbles was small because of the promoted small sizes of both bubbles and droplets by /react-text surfactants react-text: 262 . The new development could largely enhance the prediction and response to oil and gas blowouts.
Zhao L, Gao F, Boufadel C. M.
Oil Jet with Dispersant: Macro-Scale Hydrodynamics and Tip Streaming. AIChE Journal [Internet].
Publisher's VersionAbstractModeling the movement of oil released underwater is a challenging task due to limitations in measuring the hydrodynamics in an oil-water system. In this work, we conducted an experiment of horizontal release of oil without and with dispersant. The model VDROP-J was used and compared to the model JETLAG, a miscible plume trajectory model. Both models were found to reproduce the oil jet hydrodynamics for oil without and with dispersant. The predicted DSD from VDROP-J matched closely observation for untreated oil. For oil with dispersant, experimental results have shown evidence that tip streaming occurred. For this purpose, a new conceptual module was developed in VDROP-J to capture the tip streaming phenomenon and an excellent match was achieved with observation. This study is the first to report tip streaming occurring in underwater oil jets, which should have consequences on predicting the DSD when dispersant are used on an underwater oil release. © 2017 American Institute of Chemical Engineers AIChE J, 2017
Kim D, Sengupta A, Niepa THR.
Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Scientific Reports [Internet]. 7 (41332).
Publisher's VersionAbstractCandida albicans is frequently detected with heavy infection of Streptococcus mutans in plaque-biofilms from children affected with early-childhood caries, a prevalent and costly oral disease. The presence of C. albicans enhances S. mutans growth within biofilms, yet the chemical interactions associated with bacterial accumulation remain unclear. Thus, this study was conducted to investigate how microbial products from this cross-kingdom association modulate S. mutans build-up in biofilms. Our data revealed that bacterial-fungal derived conditioned medium (BF-CM) significantly increased the growth of S. mutans and altered biofilm 3D-architecture in a dose-dependent manner, resulting in enlarged and densely packed bacterial cell-clusters (microcolonies). Intriguingly, BF-CM induced S. mutans gtfBC expression (responsible for Gtf exoenzymes production), enhancing Gtf activity essential for microcolony development. Using a recently developed nanoculture system, the data demonstrated simultaneous microcolony growth and gtfB activation in situ by BF-CM. Further metabolites/chromatographic analyses of BF-CM revealed elevated amounts of formate and the presence of Candida-derived farnesol, which is commonly known to exhibit antibacterial activity. Unexpectedly, at the levels detected (25–50 μM), farnesol enhanced S. mutans-biofilm cell growth, microcolony development, and Gtf activity akin to BF-CM bioactivity. Altogether, the data provide new insights on how extracellular microbial products from cross-kingdom interactions stimulate the accumulation of a bacterial pathogen within biofilms.
Evans M, Liu J, Bacosa H, Rosenheim BE, Liu Z.
Petroleum hydrocarbon persistence following the Deepwater Horizon oilspill as a function of shoreline energy. Marine Pollution Bulletin [Internet]. 115 (1) :47-56.
Publisher's VersionAbstractAn important aspect of oil spill science is understanding how the compounds within spilled oil, especially toxic components, change with weathering. In this study we follow the evolution of petroleum hydrocarbons, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, on a Louisiana beach and salt marsh for three years following the Deepwater Horizon spill. Relative to source oil, we report overall depletion of low molecular weight n-alkanes and PAHs in all locations with time. The magnitude of depletion, however, depends on the sampling location, whereby sites with highest wave energy have highest compound depletion. Oiled sediment from an enclosed bay shows high enrichment of high molecular weight PAHs relative to 17α(H),21β(H)-hopane, suggesting the contribution from sources other than the Deepwater Horizon spill, such as fossil fuel burning. This insight into hydrocarbon persistence as a function of hydrography and hydrocarbon source can inform policy and response for future spills.
Davies EJ, Brandvik PJ, Leirvik F, Nepstad R.
The use of wide-band transmittance imaging to size and classify suspended particulate matter in seawater
. Marine Pollution Bulletin [Internet].
Publisher's VersionAbstract
An in situ particle imaging system for measurement of high concentrations of suspended particles ranging from 30 lm to several mm in diameter, is presented. The system obtains quasi-silhouettes of particles suspended within an open-path sample volume of up to 5 cm in length. Benchmarking against spherical standards and the LISST-100 show good agreement, providing confidence in measurements from the system when extending beyond the size, concentration and particle classification capabilities of the LISST-100. Particle-specific transmittance is used to classify particle type, independent of size and shape. This is applied to mixtures of oil droplets, gas bubbles and oil-coated gas bubbles, to provide independent measures of oil and gas size distributions, concentrations, and oil-gas ratios during simulated subsea releases. The system is also applied to in situ measurements of high concentrations of large mineral flocs surrounding a submarine mine tailings placement within a Norwegian Fjord.