Recent Publications

Multiphase buoyant plumes with soluble drops or bubbles

Chu S, Prosperetti A. Multiphase buoyant plumes with soluble drops or bubbles. Physical Review Fluids. 2019;4 (084306).Abstract

This paper presents the results of a scaling study of bubble and drop plumes in a stratified ambient. Use is made of a standard integral model of the top-hat type, which can be reduced to one of the Gaussian type by a simple transformation. The focus of the work is on the effects of the dissolving material on the plume dynamics. It is pointed out that, for a drop plume, the loss of buoyancy due to dissolution can be compensated by a lightening of the ambient liquid associated with the dissolved drop material, or even aggravated if the density of the solution is greater than that of the undissolved drops. For bubbles, these effects are compounded by the volume expansion due to the falling hydrostatic pressure. This process is not important in deep water, where the peel height is smaller than the water depth, but can be significant in shallow water, where the two may be comparable. With a focus on the analysis of a point-source, three important parameters are identified. The first one compares the drop/bubble dissolution rate with the rise time to the neutral height (the level at which the plume density equals the ambient density), the second one accounts for the effect of the dissolved material on the liquid density, and the third one is the drop/bubble rise velocity compared with the characteristic plume velocity.

Read more

A Device for measuring the in-situ response of Human Bronchial Epithelial Cells to airborneenvironmental agents

Chandrala LD, Afshar-Mohajer N, Nishida K, Ronzhes Y, Sidhaye VK, Koehler K, Katz J. A Device for measuring the in-situ response of Human Bronchial Epithelial Cells to airborneenvironmental agents. Scientific Reports [Internet]. 2019;9 (7263). Publisher's VersionAbstract



Measuring the time evolution of response of Normal Human Bronchial Epithelial (NHBE) cells to aerosols is essential for understanding the pathogenesis of airway disease. This study introduces a novel Real-Time Examination of Cell Exposure (RTECE) system, which enables direct in situ assessment of functional responses of the cell culture during and following exposure to environmental agents. Included are cell morphology, migration, and specialized responses, such as ciliary beat frequency (CBF). Utilizing annular nozzles for aerosol injection and installing windows above and below the culture, the cells can be illuminated and examined during exposure. The performance of RTECE is compared to that of the commercial Vitrocell by exposing NHBE cells to cigarette smoke. Both systems show the same mass deposition and similar trends in smoke-induced changes to monolayer permeability, CBF and transepithelial resistance. In situ measurements performed during and after two exposures to smoke show that the CBF decreases gradually during both exposures, recovering after the first, but decreasing sharply after the second. Using Particle image velocimetry, the cell motions are monitored for twelve hours. Exposure to smoke increases the spatially-averaged cell velocity by an order of magnitude. The relative motion between cells peaks shortly after each exposure, but remains elevated and even increases further several hours later.

Read more

Copepod manipulation of oil droplet size distribution

Uttieri M, Nihongi A, Hinow P, Motschman J, Jiang H, Alcaraz M, Strickler RJ. Copepod manipulation of oil droplet size distribution. Scientific Reports [Internet]. 2019;9 (547). Publisher's VersionAbstract
Oil spills are one of the most dangerous sources of pollution in aquatic ecosystems. Owing to their pivotal position in the food web, pelagic copepods can provide crucial intermediary transferring oil between trophic levels. In this study we show that the calanoid Paracartia granican actively modify the size-spectrum of oil droplets. Direct manipulation through the movement of the feeding appendages and egestion work in concert, splitting larger droplets (Ø = 16 µm) into smaller ones (Ø = 4–8 µm). The copepod-driven change in droplet size distribution can increase the availability of oil droplets to organisms feeding on smaller particles, sustaining the transfer of petrochemical compounds among different compartments. These results raise the curtain on complex small-scale interactions which can promote the understanding of oil spills fate in aquatic ecosystems.
Read more

The human health risk estimation of inhaled oil spill emissions with and without adding dispersant

Afshar-Mohajer N, Fox MA, Koehler K. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Science of the Total Environment [Internet]. 2019;654 :924-932. Publisher's VersionAbstract

Airborne toxic compounds emitted from polluted seawater polluted after an oil spill raise health concerns when inhaled by humans or other species. Inhalation of these toxic compounds as volatile organic compounds (VOCs) or airborne fine particulate matter (PM) may cause serious pulmonary diseases, including lung cancer. Spraying chemical dispersants to enhance distribution of the crude oil into the water was employed extensively during the Deepwater Horizon spill. There is some evidence that dispersion of the crude oil decreased the emission rate of the VOCs but increased the emission rates of fine PM that may carry toxic compounds. In this study, the cancer risks and non-cancer hazards of the detected VOCs and particulates for spill-response workers were estimated with and without use of dispersant under action of breaking waves. A subchronic exposure scenario was modeled to address the inhalation health threat during initial phases of an oil spill response. A dosimetry model was used to estimate regional deposition of PM. Use of dispersant reduced benzene cancer risks from 57 to 37 excess life- time cancer cases per million for 1 h of daily exposure that continues for 3 months. Adding dispersant resulted in emissions reductions of the lighter VOCs (up to 30% lower). However, hazard quotients (HQs) of the non- carcinogenic VOCs even after dispersant addition were above 1 meaning there are serious concerns about expo- sure to these VOCs. Inhalation of airborne particles emitted from the slick containing dispersant increased the total mass of deposited particles in upper respiratory regions compared to the slick of crude oil only. This study showed the application of dispersant onto the pollution slick increased the total mass burden to the human respiratory system about 10 times, an exploratory HQ analysis is presented to evaluate the potential health risk.


Read more

Chaos in breaking waves

Wei Z, Li C, Dalrymple RA, Derakhti M, Katz J. Chaos in breaking waves. Coastal Engineering [Internet]. 2018;(140) :272-291. Publisher's VersionAbstract
This study investigates the chaotic behavior of breaking waves by laboratory experiments and numerical modeling. Repeated laboratory runs with different initial velocity perturbations show that the wave profile before the wave breaks can be accurately reproduced, but the subsequent breaking process varies among runs, indicating the lack of repeatability of breaking waves in reality. Numerical simulations based on the Smoothed Particle Hydrodynamics method are further carried out to examine the repeatability of wave breaking process.
Consistent with the laboratory observation, multiple numerical simulations with variations in initial conditions present highly repeatable velocity field and free surface profile in the potential flow region but considerable variation at the breaking and post-breaking processes. Comparison also shows that 3D vortex structures induced by breaking waves are different among cases. Analysis of particle trajectory reveals that there is a similar trajectory thus a minor trajectory divergence among particles that are initially located at the pre-breaking region and the flume bottom, which are not directly impacted by the breaking process. However, a much more significant particle trajectory divergence is observed among particles that are initially located at the wave-splash region and the bore propagation region. The rate of divergence of particle trajectory under breaking waves is further examined by computing the Lyapunov exponent, a widely used indicator of chaos. This study reveals that different initial velocity perturbations lead to variations of near-surface velocity at the onset of wave breaking, which eventually cause the development of drastically different breaking wave jets and splashes. Therefore, the process of wave breaking, like many other dynamic processes in nature, exhibits a chaotic behavior.
Read more