Recent Publications

Copepod manipulation of oil droplet size distribution

Uttieri M, Nihongi A, Hinow P, Motschman J, Jiang H, Alcaraz M, Strickler RJ. Copepod manipulation of oil droplet size distribution. Scientific Reports [Internet]. 2019;9 (547). Publisher's VersionAbstract
Oil spills are one of the most dangerous sources of pollution in aquatic ecosystems. Owing to their pivotal position in the food web, pelagic copepods can provide crucial intermediary transferring oil between trophic levels. In this study we show that the calanoid Paracartia granican actively modify the size-spectrum of oil droplets. Direct manipulation through the movement of the feeding appendages and egestion work in concert, splitting larger droplets (Ø = 16 µm) into smaller ones (Ø = 4–8 µm). The copepod-driven change in droplet size distribution can increase the availability of oil droplets to organisms feeding on smaller particles, sustaining the transfer of petrochemical compounds among different compartments. These results raise the curtain on complex small-scale interactions which can promote the understanding of oil spills fate in aquatic ecosystems.
Read more

The human health risk estimation of inhaled oil spill emissions with and without adding dispersant

Afshar-Mohajer N, Fox MA, Koehler K. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Science of the Total Environment [Internet]. 2019;654 :924-932. Publisher's VersionAbstract

Airborne toxic compounds emitted from polluted seawater polluted after an oil spill raise health concerns when inhaled by humans or other species. Inhalation of these toxic compounds as volatile organic compounds (VOCs) or airborne fine particulate matter (PM) may cause serious pulmonary diseases, including lung cancer. Spraying chemical dispersants to enhance distribution of the crude oil into the water was employed extensively during the Deepwater Horizon spill. There is some evidence that dispersion of the crude oil decreased the emission rate of the VOCs but increased the emission rates of fine PM that may carry toxic compounds. In this study, the cancer risks and non-cancer hazards of the detected VOCs and particulates for spill-response workers were estimated with and without use of dispersant under action of breaking waves. A subchronic exposure scenario was modeled to address the inhalation health threat during initial phases of an oil spill response. A dosimetry model was used to estimate regional deposition of PM. Use of dispersant reduced benzene cancer risks from 57 to 37 excess life- time cancer cases per million for 1 h of daily exposure that continues for 3 months. Adding dispersant resulted in emissions reductions of the lighter VOCs (up to 30% lower). However, hazard quotients (HQs) of the non- carcinogenic VOCs even after dispersant addition were above 1 meaning there are serious concerns about expo- sure to these VOCs. Inhalation of airborne particles emitted from the slick containing dispersant increased the total mass of deposited particles in upper respiratory regions compared to the slick of crude oil only. This study showed the application of dispersant onto the pollution slick increased the total mass burden to the human respiratory system about 10 times, an exploratory HQ analysis is presented to evaluate the potential health risk.

 

Read more

Chaos in breaking waves

Wei Z, Li C, Dalrymple RA, Derakhti M, Katz J. Chaos in breaking waves. Coastal Engineering [Internet]. 2018;(140) :272-291. Publisher's VersionAbstract
This study investigates the chaotic behavior of breaking waves by laboratory experiments and numerical modeling. Repeated laboratory runs with different initial velocity perturbations show that the wave profile before the wave breaks can be accurately reproduced, but the subsequent breaking process varies among runs, indicating the lack of repeatability of breaking waves in reality. Numerical simulations based on the Smoothed Particle Hydrodynamics method are further carried out to examine the repeatability of wave breaking process.
Consistent with the laboratory observation, multiple numerical simulations with variations in initial conditions present highly repeatable velocity field and free surface profile in the potential flow region but considerable variation at the breaking and post-breaking processes. Comparison also shows that 3D vortex structures induced by breaking waves are different among cases. Analysis of particle trajectory reveals that there is a similar trajectory thus a minor trajectory divergence among particles that are initially located at the pre-breaking region and the flume bottom, which are not directly impacted by the breaking process. However, a much more significant particle trajectory divergence is observed among particles that are initially located at the wave-splash region and the bore propagation region. The rate of divergence of particle trajectory under breaking waves is further examined by computing the Lyapunov exponent, a widely used indicator of chaos. This study reveals that different initial velocity perturbations lead to variations of near-surface velocity at the onset of wave breaking, which eventually cause the development of drastically different breaking wave jets and splashes. Therefore, the process of wave breaking, like many other dynamic processes in nature, exhibits a chaotic behavior.
Read more

Cargo carrying bacteria at interfaces

Vaccari L, Molaei M, Leheny RL, Stebe KJ. Cargo carrying bacteria at interfaces. Soft Matter [Internet]. 2018;(14) :5643-5653. Publisher's VersionAbstract
The displacements of ensembles of colloids at the interface between oil and suspensions of the bacterium Pseudomonas aeruginosa PA14DpelA indicate enhanced colloid mobilities and apparently diffusive motion driven by interactions with the bacteria. However, inspection of individual trajectories of B500 particles reveals prolonged, directed displacements inconsistent with purely hydrodynamic interactions between swimming bacteria and colloids. Analysis of the properties of colloid paths indicates trajectories can be sorted into four distinct categories, including diffusive, persistent, curly, and mixed trajectory types. Non-diffusive trajectories are the norm, comprising 2/3 of the observed trajectories. Imaging of colloids in the interface reveals anisotropic assemblies formed by colloids decorated with one or more adhered bacteria that drive the colloids along these paths. The trajectories and enhanced transport result from individual colloids being moved as cargo by these adhered bacteria. The implications of these structures and open questions for interfacial transport are discussed and related to the active colloid literature. 
Read more

Environmental petroleum pollution analysis using ramped pyrolysis-gas chromatography-mass spectrometry

Seeley Evans M, Wang Q, Bacosa H, Rosenheim BE, Liu Z. Environmental petroleum pollution analysis using ramped pyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry [Internet]. 2018;124 :180-189. Publisher's VersionAbstract
In response to the Deepwater Horizon oil spill, critical research has tracked the changes in petroleum hydrocarbons with environmental weathering. There are limitations, however, whereby single analytical techniques cannot always identify the wide breadth of petroleum and petroleum-derived compounds. We explore the analytical capabilities of ramped pyrolysis-gas chromatography–mass spectrometry (Py-GC–MS) to evaluate environmental samples of petroleum hydrocarbons from the Deepwater Horizon oil spill. We show that bulk flow Py-GC–MS can quantify the overall degree of petroleum hydrocarbon weathering. Furthermore, thermal slicing Py-GC–MS can quantify specific compounds in the “thermal desorption zone” (50–370 °C), as well as characterize pyrolyzed fragments from non-GC-amenable petroleum hydrocarbons (including oxygenated hydrocarbons) in the “cracking zone” (370–650 °C). Our data also suggest an increase in thermochemical stability, concentration of oxygenated products and complexity of high molecular weight and/or polar components with advanced weathering. This analysis not only elucidates weathering trends in Deepwater Horizon oil over several years, but also illustrates the analytical capacity of this method for future petroleum hydrocarbon investigations, filling a void in research connecting Py-GC–MS and environmentally weathered oil samples.
Read more
More